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ABSTRACT 

 

The signal processing aspect of a 2-μm wavelength coherent Doppler lidar system under 

development at NASA Langley Research Center in Virginia is investigated in this paper.  

The lidar system is named VALIDAR (validation lidar) and its signal processing program 

estimates and displays various wind parameters in real-time as data acquisition occurs.  

The goal is to improve the quality of the current estimates such as power, Doppler shift, 

wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime.  A 

novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed 

on such behalf and its performance is analyzed using the wind data acquired over a long 

period of time by VALIDAR.  The quality of Doppler shift and power estimations by 

conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly 

as SNR decreases.  NADSET compensates such deterioration in the quality of wind 

parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a 

strong SNR range and identifying sporadic range bins where good Doppler shift estimates 

are found.  The authenticity of NADSET is established by comparing the trend of wind 

parameters with and without NADSET applied to the long-period lidar return data. 

 

Keywords: coherent lidar, Doppler shift, maximum likelihood, Nonlinear Adaptive 

Doppler Shift Estimation Technique, periodogram, subspace, Validation Lidar, wind 

profiling 

 

I. INTRODUCTION 
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The area of wind parameter estimation using lidar returns and its theoretical analysis have 

been explored in various aspects by many researchers.  The principles of such research lie 

in the processing of the time series data of lidar returns that are the superposition of the 

backscattered field of small atmospheric aerosol particles.  Such returns are modeled by a 

zero-mean Gaussian stochastic process with additive and statistically independent white 

noise processes.  The independence of the two processes originates from the assumption 

of uncorrelated aerosol particle movement being greater than the wavelength of the lidar 

between each data acquisition time instant [1].  When the signal-to-noise-ratio (SNR) is 

strong, the mean-frequency estimators are unbiased and the quality of wind parameter 

estimates remains high even with small number of stochastic lidar returns [2].  In the 

regime of weak signal environment, however, the estimates are biased and often 

accumulation of multiple lidar returns is performed in order to improve the quality of 

such estimates.  Utilizing the stochastic moments of various orders of Gaussian stochastic 

processes, the lowest possible variance of the parameter estimates, Cramer-Rao (CR) 

bound, was investigated in order to achieve more quantitative measures of estimates [3–

5].  The unfavorable influence of the Gaussian noise on the estimation of the second 

order centralized moment of Doppler spectra can be reduced in weak signal regime by 

identifying an optimal Gaussian noise threshold while assuming the Doppler spectra as 

the probability density function and the frequency as random variables [6].  The 

performance of such a method, however, experiences dramatic deterioration if the system 

noise does not remain at a constant level.  The effect of spectral correlation of the return 

signals caused by backscatter variability on lidar returns and weather radar returns was 

investigated in [7].  The effort in minimizing the interference of Gaussian noise is also 
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shown in [8] by whitening the noise assuming that the tail of lidar time series data 

represents negligible aerosol signals.  The impact of noise whitening on wind parameter 

estimation using a lidar system at NASA Langley Research Center is presented in [9]. 

 

 The lidar system VALIDAR (validation lidar) at NASA Langley Research Center 

in Hampton, Virginia is a 2-μm wavelength coherent system, which is a high-energy 

Doppler lidar to measure wind profiles and CO2 concentration, serving as a calibration 

source for future airborne and spaceborne lidar missions.  The uniqueness of VALIDAR 

is its transmitted pulse energy in the 100 mJ range, as opposed to the 1–5 mJ lidars also 

in use at this wavelength.  The optical design of VALIDAR is introduced in [10–12] and 

a variety of research outcomes with such a system are reported in [9–18].  The efforts in 

improving the quality of wind parameter estimates in low SNR regime in particular are 

the main goal in [9, 13–15].  The current VALIDAR has the capability of processing lidar 

returns simultaneously as the data acquisition process occurs in real time.  The hardware 

configuration of VALIDAR consists of (1) Compact PCI chassis by PEP Modular with 

eight slots, (2) PEP Modular CP603 64-bit cPCI Pentium III at 850 MHz with 768 MB 

SDRAM, (3) Acqiris DC240 with two-channel simultaneous sampling capability at up to 

2 GHz with 8 bit resolution, and (4) BittWare ADSP-21160M HammerHead DSP module 

with eight DSP processors.  The data processing program is developed in VisualC++ with 

the GUI drivers from LabWindows CVI developed by National Instruments in Windows 

2000 operating system.  The data transfer rate of direct upload and download sustains the 

overheads of the maximum of 2–2.5 MB/sec transfer rate from DSP to host (upload) and 

13–15 MB/sec transfer rate from host to DSP (download).  The data transfer, however, is 
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implemented via bus mastering, which provides the maximum transfer rate of 90 MB/sec 

for upload and 30 MB/sec for download. 

 

 A series of the most recent research studies in light of wind parameter estimation 

improvement with VALIDAR can be found in [9, 13–15].  The impact of power spectrum 

estimation on the quality of wind parameter estimation by maximum likelihood method, 

the Bartlett, the Welch, and the Blackman and Tukey method was shown insignificant in 

[13].  The Doppler shift estimates, however, were improved in terms of frequency 

resolution by means of zero padding.  The application of noise whitening [8] to data 

processing of VALIDAR was investigated in [9].  Assuming the tail of each lidar return 

time series represents the noise, the power spectrum of noise was estimated by a nominal 

number of samples in the tail of lidar return and was used to normalize the noise in the 

spectrum of signal.  Modeling the noise by a small order of linear predictor was also 

investigated in the same paper.  In addition, different types of windowing functions were 

applied to the time series data and their contribution to the quality of wind parameter 

estimates was observed, too.  Implemented were both time and frequency independent 

and dependent windows such as the Rectangular, the Hanning, the Kaiser-Bessel, and the 

Apodized windows.  It was concluded in [9] that the improvement in the wind parameter 

estimates was not recognizable.  Then, a signal subspace approach was studied in the 

realm of lidar signal processing in [14].  The principle of orthogonality between the 

signal and the noise subspaces, which are the spans of the signal and the noise 

eigenvectors, was explored and the identification of maximum power frequency in the 

power spectrum of lidar time series data in each range bin was improved by removing 
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erroneous power spikes present in the original power spectrum.  Despite the removal of 

such spurious peaks in the power spectrum, however, the overall improvement in the 

wind parameter estimates was not manifest.  Such a series of mathematically tractable 

methods in an attempt to improve wind parameter estimates in low SNR in particular 

with exiguous evidence of amelioration gave a rise to a nonlinear method to deal with a 

low signal level in the stochastic lidar returns, and this paper introduces a new Doppler 

shift and power estimation method NADSET (Nonlinear Adaptive Doppler Shift 

Estimation Technique) developed for VALIDAR.  The details of NADSET is presented 

in this paper and another performance analysis of NADSET with a different set of long-

period lidar return data can also be found in [15].  The meteorological perspective of the 

NADSET algorithm is presented in [19]. The brief overview of the signal processing 

algorithm of VALIDAR is presented in the following section, followed by the detailed 

description of NADSET and its principle in section III.  Section IV demonstrates the 

influence of NADSET on long-period lidar return time series data acquired by 

VALIDAR.  The conclusion and the future direction of research are in Section V.  The 

look direction of the lidar system is indicated by <a, b> where a is the azimuth angle and 

b is the elevation angle in degrees.  Lowercase bold letters represent column vectors such 

as x, and uppercase bold letters indicate matrices and fast Fourier transform (FFT) of a 

data array such as X. 

 

II. LIDAR SIGNAL PROCESSING OF VALIDAR 

The latest version of the wind parameter estimation algorithm of VALIDAR is briefly 

summarized.  The detailed description can be found in [17]. 
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Step 1 A nominal number of lidar returns s n
p (t)  are acquired repeatedly (accumulated) at 

a selected look direction and such a procedure is repeated for three different directions. 

The subscript n is the accumulation index and the superscript p indicates the index of 

time elapse. 

Step 2 Divide s n
p (t)  into M vectors, x0, n

p , x1,  n
p , …, xM −1, n

p , with a certain percentage of 

overlap. 

Step 3 Compute the power spectrum X m,  n
p ( f )  of each vector xm,  n

p .  Check if fmin ≤ f0, n
p  

≤ fmax, where f0, n
p  = max

f ≥ F
X0, n

p ( f )⎡⎣ ⎤⎦ , and  fmin  and fmax are the minimum and the 

maximum limits of Doppler frequency and F is the lower threshold of frequency 

estimation.  The first f0, n
p  that satisfies this constraint is used as a reference frequency in 

estimating the Doppler shift. 

Step 4 EstimateY p  = {Y1
p , …, YM −1

p }, where each element is the average of the 

frequency adjusted power spectra, i.e., Ym
p ( f ) =

1
Q

X̂m , n
p ( f )

n= 0

Q−1

∑ , where m = 1, …, M – 1, Q 

is the number of pulse returns that satisfy the frequency constraint, and X̂ m,  n
p ( f )  is the 

frequency aligned version of X m,  n
p ( f ) .  (This frequency alignment is called zero Doppler 

normalization.)  The final products Y p  are used to estimate wind parameters such as 

Doppler shift, power, wind speed, and wind direction.  This paper presents the data 

processing results with twenty lidar returns (n = 1, …, 20) at each look direction and 512-

point FFT is used to compute the periodogram of the M vectors.  p is 1 indicating that a 

data set of single repetition is used to illustrate the NADSET algorithm. 
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 Figures 1 and 2 show an example of VALIDAR software output screen where 

Doppler shift (DS), power spectral density (PSD), wind speed (WS), and wind direction 

(WD) are displayed in real time.  The stochastic lidar return time series data were 50,000 

samples long, and twenty repeated lidar returns were used to perform averaging of the 

periodogram of each bin data.  Such 50,000 samples were divided into the segments of 

512 samples with 50% overlap with adjacent segments.  The sampling frequency was 500 

MHz and the Rectangular window was used before computing the periodogram.  The 

details of the impact of different windowing functions can be found in [9].  The Doppler 

shift frequency window ranges from 95 MHz to 115 MHz in those figures.  The data 

were acquired on June 16, 2005 at NASA Langley Research Center in Hampton, 

Virginia.  In particular, Figure 1(a) shows the software band-passed averaged 

periodogram in the seventeenth range bin over twenty pulses.  The passband of the 

hardware filter is set by an analog filter in place prior to digitization in order to prevent 

aliasing.  A slope exists in the 65 MHz to 145 MHz passband that results from the 

spectral characteristics of the heterodyne photodetector in use. 

 

III. NONLINEAR ADAPTIVE DOPPLER SHIFT ESTIMATION TECHNIQUE (NADSET) 

NADSET takes a different approach to wind profiling based on the nature of continuous 

wind characteristics and significantly improves the quality of Doppler shift estimate in 

low SNR ranges.  The authenticity of NADSET is established by comparing the trend of 

wind parameters with and without NADSET applied to the lidar returns acquired over a 

long period of time by VALIDAR.  The algorithm has two parts: Range Bin Interval 

Identification and Wind Parameter Estimation. 
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A. Range Bin Interval Identification (Part I) 

Step 1 Estimate the Doppler shift estimates DS[m] using the periodogram of lidar returns 

in each bin, where m is the bin index. 

Step 2 Find 
d
ds

DS(s) , where DS(s) indicates that the Doppler shift estimate is a function 

of continuous range s.  The following discrete version is used for NADSET: 

 ΔDS[m] =
DS[m + Δm] − DS[m ]

Δm
 [MHz/bin], (3) 

where ΔDS[m] is the slope of DS at the mth bin, and a unity increment is chosen without 

loss of generality (Δm = 1 bin). 

Step 3 Identify the bin indices m where the absolute value of ΔDS[m] exceeds a user-set 

Absolute DS Slope Threshold A [MHz/bin]. 

Step 4 Find the smallest bin index mA such that |ΔDS[mA] | ≥ A. 

Step 5 In the region where the SNR is high and the Doppler shift estimate is stable, 

compute the first order moment and the second order centralized moment as follows: 

μ = E{DS[m]} [MHz], 

σ 2 = E{(DS [m] – μ)2} [MHz2], 

where E is the expectation or the ensemble average operator.  The following discrete 

versions are used for NADSET: 

μA = 
1

mA − L + 1
DS[m]

m = L

mA

∑ , (1) 

σΑ
2 = 

1
mA − L + 1

DS[m] − μA( )2

m = L

mA

∑ , (2) 
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where L is the user-selectable beginning bin index for the moment calculation.  The 

current value of L is 4.  Note that mA, μA, and σΑ 2 indicate that they are all a function of 

the parameter A. 

Step 6 Among the chosen bin indices m in Step 3, find m1 and m2 where m1 < m2, and 

ΔDS[m1] is the first negative ΔDS[m] and ΔDS[m2] is the first positive ΔDS[m], meeting 

the following requirements: 

 μA – σAD ≤ DS[m1] ≤ μA + σAD, (4) 

 DS[m1] – B ≤ DS[m2] ≤ DS[m1] + B, (5) 

where B is the Secondary DS Continuity Margin in MHz and D is the unitless Stationary 

DS Deviation Margin.  Each is a user-set positive constant. 

Step 7 If the new m1 is m2 from the previous search, the new m2 replaces the previous m2.  

(Range merging)  This can occur if the DS estimate shows positive and negative slopes 

about a bin index. 

Step 8 If m2 – m1 > C, where C is the Maximum DS Continuity Range Margin in the unit 

of bin index, discard m1 and m2.  Otherwise, mark those bin indices.  C is also a user-

specified positive parameter. 

Step 9 Repeat Steps 6-8 until the algorithm exhausts the entire bins. 

 

B. Wind Parameter Estimation (Part II) 

Step 1 Find the frequencies f1 and f2 where the zero-Doppler normalized periodogram in 

the range bins m1 and m2 is maximal, respectively.  Assume f1 < f2 without loss of 

generality. 

Step 2 For range bin indices from m1 + 1 to m2 – 1, find a new maximal power in [f1, f2] 
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and its frequency.  The new Doppler shift frequency is estimated by using the frequency 

at the new maximum power. 

Step 3 Wind speed and wind direction are estimated using the new Doppler shift 

estimate. 

 

C. Parameters of NADSET 

The algorithm is based on the seven parameters such as μ, σ 2, Δm, A, B, C, and D.  The 

two moments μ and σ 2 provide a reference point of Doppler shift frequency in strong 

SNR regime.  The increment Δm in the numerical slope calculation reflects the degree of 

correlation of Doppler shift estimates between range bins.  A unity increment is 

implemented assuming the independence of DS estimates across the range bin.  The 

Absolute DS Slope Threshold A reflects the severity of deterioration in the quality of DS 

estimate due to the loss of signal strength.  A larger value of A implies more robust 

quality of the original DS estimates since NADSET will attempt to preserve the original 

DS estimates until the DS estimate experiences a severe fluctuation.  The Stationary DS 

Deviation Margin D in (4) is to confirm if an identified DS[m1] could have been a more 

reasonable estimate than the original DS estimate at m = m1 if it  had not been for the low 

SNR.  The Secondary DS Continuity Margin B in (5) shows the degree of assumption in 

the continuity of wind profiling.  Since wind speed and wind velocity are closely related 

to Doppler shift and the behavior of wind in any nearby range bins should be of similar 

nature, so should be the Doppler shift estimates in nearby range bins, for example, within 

the range of B MHz.  The Maximum DS Continuity Range Margin C imposes restriction 

on the range of continuous wind profile, especially the merged bin ranges that NADSET 
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has identified.  When the values of the parameters based on the bin range such as Δm, B, 

and C are selected, the length of each range bin should be taken into account in 

determining the values of the other parameters. 

 

IV. APPLICATION OF NADSET TO LIDAR RETURNS 

In this section, the results with and without NADSET are first compared using one set of 

lidar returns at the direction <0, 90>.  Then, the performance of NADSET is analyzed by 

applying it to lidar returns acquired over a long period of time.  Such analysis will serve 

as a stepping stone to establish the authenticity of the algorithm. 

 

A. Performance of NADSET 

The performance of NADSET is shown using the lidar return time series data at <0, 90>.  

The length of each lidar return was 50,000 and each lidar return was segmented into bins 

of 512 samples with 50% of overlap with adjacent bins, resulting 190 bins (M = 190).  

The first 512 time series in 50,000 represented the lidar return before the 10-Hz TTL 

trigger in order to estimate the zero Doppler frequency accurately, and the first 1024 

samples including the 512 pre-trigger time series were used for zero-Doppler frequency 

estimation.  The sampling frequency was 500 MHz and twenty lidar returns were 

averaged at the look direction.  The interval of zero Doppler frequency was set to 

[95MHz, 115MHz] and each bin was 153.49 meters long.  The power spectrum in each 

bin was estimated by the periodogram with the Rectangular window.  The lidar return 

time series data in this comparison analysis were acquired at 1:21 P.M. E.S.T. on June 

16th, 2005 at NASA Langley in Hampton, Virginia.  The empirical values of the 
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NADSET parameters were: Δm = 1 bin, A = 5 MHz/bin, B = 5 MHz, C = 15 bins, and D 

= 4.5. 

 

 Figures 3 through 8 show the comparison of DS estimates with and without 

NADSET applied.  In order to display the difference clearly, the entire bins were divided 

into three intervals, and the DS estimates are displayed against the bin index instead of 

range in km.  The bin index begins at zero instead of one due to the nature of the 

programming language, and there are a total of 190 bins.  In each figure, the upward and 

the downward vertical lines indicate the beginning and the end of an interval that 

NADSET has identified to enhance the quality of DS estimates.  The two of the seven 

parameters, μA and σΑ
2, were estimated using the DS estimates in the bin index range [2, 

43], where the SNR was strong resulting in stable DS estimates.  Figure 3 shows the first 

interval candidate [44, 48] and Figure 4 shows the improved DS estimates.  Figure 5 

shows the next candidates [62, 64], [65, 67], [68, 70], and [71, 96], and Figure 6 shows 

the result of the application of NADSET.  Similarly, Figure 7 shows that the two intervals 

[97, 102] and [131, 145] are the next ones where NADSET will re-estimate the DS, and 

the result is shown in Figure 8.  Note that NADSET did not recognize the peaks in [103, 

130] or [146, 189] as candidates for improvement since they did not meet the conditions 

that were presented in the previous algorithm section.  Figures 9 and 10 show the 

comparison of both DS and PSD for the entire bin range.  The new PSD estimates in 

Figure 10 show lower power than the original estimates because the latter were the 

maximum power values in each range bin. 
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B. Validation of  the performance of NADSET 

In order to test the accuracy of the wind measurements produced by NADSET, we 

applied the algorithm to a long continuous data set to see if the measurements made sense 

from a meteorological interpretation.  Atmospheric profiles were recorded over a span of 

approximately 9 1/2 hours on June 28, 2005 and were processed both with and without 

NADSET applied.  The goal of this study was to assess where wind measurements were 

improved with NADSET and under what conditions spurious false data might be created.  

Setting wide parameters on the NADSET algorithm can allow more false readings, but 

restricting the parameters can limit the benefits of the algorithm.  The best setting of the 

NADSET parameters for this set of data was empirically found to be A = 5 MHz/bin , B = 

9 MHz, C = 15 bins, and D = 4.5. 

 

 The recorded wind profiles, shown in Figures 11–13, were made with the lidar 

beam pointed in three different directions to form measurements of the horizontal wind 

and vertical wind profiles.  The first two directions were made at 45 degree elevation 

angle and orthogonal azimuths to find the two components of the horizontal wind vector.  

The vector sum of these two components is shown in the first two panels of Figure 11 

and Figure 12 as the horizontal wind speed and horizontal wind direction.  The third look 

direction was directed upward to measure the vertical wind motion and the presence of 

clouds.  Vertical wind speed and the backscatter power form the lower two panels of 

Figure 11 and Figure 12. 

 

 This data set contains a good variety of atmospheric conditions for testing 
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NADSET with clouds at multiple altitudes, layering of aerosols, a variety of wind speeds, 

and precipitation.  The benefit of NADSET is best seen in the gaps of Figure 11 where 

the aerosol backscatter drops at altitudes near 3500 m and 5000 m throughout the first 

half of the data set.  The horizontal wind speed, reproduced in Figure 13 for a convenient 

side-by-side comparison with and without NADSET, has the gap filled in with the 

application of NADSET.  The speed in the filled in gap is consistent over time, a trend to 

be expected and showing that NADSET is making accurate wind measurements.  The 

larger gap seen beginning near 5000 m altitude in the first half of the data set occurs as 

the aerosol density drops, but the signal reappears as clouds are encountered at higher 

altitudes.  NADSET works very well in this situation, filling in data in some cases to 

achieve an extra 2 km of altitude.  The data filled in by NADSET is also consistent with 

time, and more definitively identifies a wind shear that occurs at 5 km altitude. 

 

 The second half of the data set provides a good opportunity for testing NADSET 

in its potential for providing false estimates, in that thick clouds occurred.  These clouds 

are thick enough to extinguish the transmitted pulse energy, hence there should be no 

measurements close to the good values measured beneath the clouds.  When making an 

estimate on a spectrum of noise, the algorithm’s peak detection will find a random peak 

in the noise.  However, the noise spectrum in the photodetector used here is tilted (see 

Figure 1a), so the peak detector tends to select a value on an extreme end of the spectrum.  

The false extremes of the wind speed measurement occur outside the range of values 

displayed in the scale of Figures 11–13, and are displayed as grey.  If the full range of 

wind speeds were set to cover the entire passband of +/– 40 MHz Doppler shift, then  
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multicolored points would appear where the data are noisy (this effect can be seen in the 

wind direction displays).  With the application of NADSET, the wind speed 

measurements above the clouds in the 2nd half of the data showed grayed out results that 

are not misleading to interpret as true.  The few false data points within the range of wind 

speed displayed could possibly be eliminated or flagged by adding a feature to the 

algorithm that, for example, measures the continuity of wind measurements with altitude. 

 

V. CONCLUSION 

The new nonlinear wind parameter estimation algorithm NADSET is presented in detail 

in this paper.  The motivation of such development of a nonlinear algorithm is ascribed to 

the ambiguous improvement in wind parameters estimated by mathematically driven 

methods, especially in low SNR regime [9, 13–14].  NADSET takes advantage of the 

continuous nature of wind and adaptively re-estimates DS and PSD (and WS and WD 

consequently) by feeding back the information of Doppler shift from the range bins 

where signal strength is identified as strong.  The authenticity of NADSET is established 

and its benefits are demonstrated by means of the meteorological interpretation of long-

period lidar return data.  The application of NADSET to such a set of lidar return shows 

that the new wind parameters are meaningful while compensating the weakness of signal 

strength in the quality of wind parameter estimates. 

 

 NADSET currently relies on the two good DS estimates to identify a range to be 

compensated and its performance is closely related to the properly chosen values of the 

seven parameters among which five of them are user-dependent.  The most latest version 
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of NADSET allows users to experiment on different values of parameters using a user-

selectable single set of three-direction lidar return time series in order to find the best 

parameters empirically.  Such a step can be automated by integrating into the algorithm 

various aspects of criteria such as the statistics of current and past weather condition and 

the time of the year.  A single-sided version of NADSET is also under investigation 

where one good DS estimate is used to identify a range to be enhanced instead of two.  

NADSET will continue to evolve while incorporating such features in the future work. 
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FIGURE CAPTIONS 

 

Figure 1 The averaged periodogram in the 17th range bin and the estimates of 

Doppler shift and power spectral density from the coherent lidar system VALIDAR.  The 
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look direction was <0, 90> and the parameters were estimated from 50,000 lidar return 

time series, sampled at 500 MHz and repeated twenty times for averaging.  512-point 

FFT was used to compute the periodogram of the data with the Rectangular window in 

each range bin.  The lower and the upper limits of the Doppler shift frequency range were 

95 MHz and 115 MHz. 

 

Figure 2 The estimates of wind speed and wind direction from the coherent lidar 

system VALIDAR using the lidar returns from three look directions.  The look directions 

were <0, 30>, <90, 30>, and <0, 90> and the system setup was identical with that in 

Figure 1. 

 

Figure 3 Bin range identification by NADSET.  The upward vertical line indicates 

the beginning and the downward, the end of range identified by NADSET.  Only the first 

50 bins have been shown in this figure and the direction was <0, 90>.  The thick solid 

line is the Doppler shift estimates without NADSET. 

 

Figure 4 The Doppler shift estimates by NADSET.  The upward vertical line 

indicates the beginning and the downward, the end of range identification by NADSET.  

Only the first 50 bins have been shown in this figure and the direction was <0, 90>. 

 

Figure 5 Bin range identification by NADSET.  Only the 45th–100th bins have 

been shown in this figure and the direction was <0, 90>.  The thick solid line is the 

Doppler shift estimates without NADSET. 
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Figure 6 The Doppler shift estimates by NADSET.  Only the 45th–100th bins have 

been shown in this figure and the direction was <0, 90>. 

 

Figure 7 Bin range identification by NADSET.  The last 90th–190th bins have been 

shown in this figure and the direction was <0, 90>.  The thick solid line is the Doppler 

shift estimates without NADSET. 

 

Figure 8 The Doppler shift estimates by NADSET.  The last 90th–190th bins have 

been shown in this figure and the direction was <0, 90>. 

 

Figure 9 The Doppler shift estimate comparison.  The dotted line is the estimates 

without NADSET and the thick solid line shows the estimates with NADSET. 

 

Figure 10 The power estimate comparison.  The dotted line is the estimates without 

NADSET and the thick solid line shows the estimates with NADSET. 

 

Figure 11 Wind profile taken on June 28, 2005 processed without NADSET.  The 

panels of data show, from top to bottom, 1) horizontal wind speed, 2) horizontal wind 

direction, 3) vertical wind speed (red upward, purple downward), and 4) backscatter 

signal power from zenith viewing.  Vertical gaps appear in the data as one set of data 

ends and other begins or as problems occurred with the control computer.  A speed or 

direction display in gray indicates that the measured value is out of range of the color 
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scale. 

 

Figure 12 The same set of data as Figure 11 with NADSET applied.  Areas are 

circled in which NADSET created a benefit. 

 

Figure 13 Horizontal wind measurements without (upper plot) and with (lower plot) 

NADSET applied reproduced from Figures 11 and 12 for convenient comparison. 

 

 


